Lazy Factored Inference for Functional Probabilistic Programming

نویسندگان

  • Avi Pfeffer
  • Brian E. Ruttenberg
  • Amy Sliva
  • Michael Howard
  • Glenn Takata
چکیده

Probabilistic programming provides the means to represent and reason about complex probabilistic models using programming language constructs. Even simple probabilistic programs can produce models with infinitely many variables. Factored inference algorithms are widely used for probabilistic graphical models, but cannot be applied to these programs because all the variables and factors have to be enumerated. In this paper, we present a new inference framework, lazy factored inference (LFI), that enables factored algorithms to be used for models with infinitely many variables. LFI expands the model to a bounded depth and uses the structure of the program to precisely quantify the effect of the unexpanded part of the model, producing lower and upper bounds to the probability of the query.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PRISM Revisited: Declarative Implementation of a Probabilistic Programming Language Using Delimited Control

PRISM is a probabilistic programming language based on Prolog augmented with primitives to represent probabilistic choice. PRISM is implemented using a combination of low level support from a modified version of B-Prolog, source level program transformation, and libraries for probabilistic inference and learning implemented in the imperative language C. More recently, developers of probabilisti...

متن کامل

Lazy Explanation-Based Approximation for Probabilistic Logic Programming

We introduce a lazy approach to the explanation-based approximation of probabilistic logic programs. It uses only the most significant part of the program when searching for explanations. The result is a fast and anytime approximate inference algorithm which returns hard lower and upper bounds on the exact probability. We experimentally show that this method outperforms state-of-the-art approxi...

متن کامل

A Dynamic Programming Algorithm for Inference in Recursive Probabilistic Programs

We describe a dynamic programming algorithm for computing the marginal distribution of discrete probabilistic programs. This algorithm takes a functional interpreter for an arbitrary probabilistic programming language and turns it into an efficient marginalizer. Because direct caching of sub-distributions is impossible in the presence of recursion, we build a graph of dependencies between sub-d...

متن کامل

Structured Factored Inference: A Framework for Automated Reasoning in Probabilistic Programming Languages

Reasoning on large and complex real–world models is a computationally difficult task, yet one that is required for effective use of many AI applications. A plethora of inference algorithms have been developed that work well on specific models or only on parts of general models. Consequently, a system that can intelligently apply these inference algorithms to different parts of a model for fast ...

متن کامل

An Empirical Evaluation of Possible Variations of Lazy Propagation

As real-world Bayesian networks continue to grow larger and more complex, it is important to investigate the possibilities for improving the performance of existing algorithms of probabilistic inference. Motivated by examples, we investigate the dependency of the performance of Lazy propagation on the message computation algorithm. We show how Symbolic Probabilistic Inference (SPI) and Arc-Reve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1509.03564  شماره 

صفحات  -

تاریخ انتشار 2015